
Contract Number: H98230-08-D-0171 DO1, TTO2, RT 035
Report No. SERC-2011-TR-022

December 31, 2011
UNCLASSIFIED

Agile and Lean Systems Engineering:
Kanban in Systems Engineering

Final Technical Report SERC-2011-TR-022
31 December 2011

Principal Investigator - Richard Turner, Stevens Institute of Technology
Co-Principal Investigator: Ray Madachy, Naval Postgraduate School

Team Members
Jo Ann Lane - University of Southern California

Dan Ingold, PhD Candidate - University ofSouthern California
Laurence Levine, PhD Candidate - Stevens Institute of Technology

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
31 DEC 2011

2. REPORT TYPE
Final

3. DATES COVERED

4. TITLE AND SUBTITLE
Agile and Lean Systems Engineering: Kanban in Systems Engineering

5a. CONTRACT NUMBER
H98230-08-D-0171

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Turner /Dr. Richard

5d. PROJECT NUMBER
RT 35

5e. TASK NUMBER
DO1 TTO2

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Stevens Institute of Technology Naval Postgraduate School University
of Southern California

8. PERFORMING ORGANIZATION REPORT
NUMBER
SERC-2011-TR-022

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DASD (SE)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This research project evaluates the use of on-demand (pull or kanban) scheduling approaches in systems
engineering. In particular, this initial phase focuses on systems engineering where rapid response software
development projects incrementally evolve capabilities of existing systems and/or systems of systems. It
defines and models a kanban-based scheduling system and a services approach to systems engineering
among software projects in such an environment. It then reports on simulation of their performance and
those of traditional SE methods to understand if systems engineering functions are accomplished more
effectively and efficiently, and whether the overall value of the systems of systems over time is increased.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

65

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Contract Number: H98230-08-D-0171 DO1, TTO2, RT 035
Report No. SERC-2011-TR-022

December 31, 2011
UNCLASSIFIED

Copyright © 2011 Stevens Institute of Technology, Systems Engineering Research Center

This material is based upon work supported, in whole or in part, by the U.S. Department of Defense
through the Systems Engineering Research Center (SERC) under Contract H98230-08-D-0171. SERC is a
federally funded University Affiliated Research Center managed by Stevens Institute of Technology

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY
THIS STEVENS INSTITUTE OF TECHNOLOGY AND SYSTEMS ENGINEERING RESEARCH CENTER MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. STEVENS INSTITUTE OF TECHNOLOGY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. STEVENS INSTITUTE OF TECHNOLOGY DOES NOT MAKE ANY WARRANTY
OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission is required
for any other external and/or commercial use. Requests for permission should be directed to the
Systems Engineering Research Center at dschultz@stevens.edu

* These restrictions do not apply to U.S. government entities.

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

2

UNCLASSIFIED

This page intentionally left blank

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 3

 UNCLASSIFIED

ABSTRACT

This research project evaluates the use of on-demand (pull or kanban) scheduling
approaches in systems engineering. In particular, this initial phase focuses on systems
engineering where rapid response software development projects incrementally evolve
capabilities of existing systems and/or systems of systems. It defines and models a
kanban-based scheduling system and a services approach to systems engineering among
software projects in such an environment. It then reports on simulation of their
performance and those of traditional SE methods to understand if systems engineering
functions are accomplished more effectively and efficiently, and whether the overall
value of the systems of systems over time is increased.

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

4

UNCLASSIFIED

ACKNOWLEGEMENTS

This work could not have been accomplished without the support of an extremely
talented volunteer industry working group of experienced professionals with extensive
experience in lean, kanban and systems engineering. This group included:

 David Anderson (David J. Anderson and Associates)

 Mike Burrows (David J. Anderson and Associates)

 Victor Dingus (TASC)

 Brian Gallagher (Northrop Grumman)

 Hillel Glazer (Entinex)

 Curtis Hibbs (Boeing)

 Suzette Johnson (Northrop Grumman)

 Dominic Lepore (Stevens Institute, Howe School)

 Don Reinertsen (Reinertsen & Associates)

 David Rico (Boeing)

 Garry Roedler (Lockheed Martin)

 Karl Scotland (Rally Software, UK)

 Alan Shalloway (NetObjectives)

 Neil Shirk (Lockheed Martin)

 Neil Siegel (Northrop Grumman)

 James Sutton (Jubata Group)

Thanks are also due to the members of the SERC Research Council, particularly Barry
Boehm and Jon Wade, for their support.

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

5

UNCLASSIFIED

TABLE OF CONTENTS

Abstract .. 3

Acknowlegements ... 4

Table of Contents .. 5

Figures and Tables .. 7

1 Summary .. 9

1.1 Purpose of Research ... 9

1.2 Work Accomplished .. 9

1.3 Findings .. 9

1.4 Research Results .. 9

1.5 Next Steps .. 10

2 Introduction ... 11

2.1 Kanban as a starting place ... 11

2.2 Predicted Benefits of the Proposed Approach ... 13

2.2.1 More effective integration and use of scarce systems engineering resources 13

2.2.2 Flexibility and predictability .. 13

2.2.3 Visibility and coordination across multiple projects ... 13

2.2.4 Low governance overhead ... 14

2.2.5 Increased project and system value delivered earlier .. 14

3 The Kanban-based Scheduling System ... 15

3.1 Definition of a KSS ... 15

3.2 Systems Engineering as a Service .. 17

4 Modeling and Simulation of the KSS Approach 21

4.1 Goals of the models .. 21

4.2 Modeling strategies ... 21

4.3 Discrete-event and continuous models and tool 24

4.4 Agent-Based Models and Tools .. 27

4.4.1 Tool selection .. 27

4.4.2 Agent-based model design .. 28

4.5 Modeling Scenarios ... 32

4.5.1 Scenario 1: Common ... 33

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

6

UNCLASSIFIED

4.5.2 Scenario 2: Traditional SE .. 34

4.5.3 Scenario 3: KSS ... 34

4.5.4 Scenario execution .. 35

5 Research Outcomes and Next Steps .. 36

5.1 Summary .. 36

5.2 Next steps for further research ... 36

5.2.1 Phase 2: March-September 2012. Complete and validate simulation demonstration
toolkit ... 36

5.2.2 Phase 3: October-September 2012. Apply the toolkit to multiple real environments .
... 37

6 Appendices .. 40

6.1 Appendix A: references ... 40

Appendix B – Software Code ... 42

6.2 Appendix B – Software Code .. 42

6.2.1 Agent-based Simulation (Brahms).. 42

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 7

 UNCLASSIFIED

FIGURES AND TABLES

Figure 1. Kanban Scheduling System Model .. 15

Figure 2. Kanban Scheduling System Hierarchy .. 16

Table 1. Kanban Scheduling System Definitions ... 17

Figure 3. Overview of SE as a Service concept .. 18

Table 2. Systems engineering service categories .. 20

Figure 4. Modeling approach vs. abstraction level [17] ... 22

Table 3. Comparison of Modeling Approaches (adapted from [18])............................... 23

Figure 5. Example Results .. 25

Figure 6. Example Project Gantt with Rework ... 26

Figure 7. Example Enterprise Project Gantt with SE Services ... 26

Figure 8. Example Monte Carlo Results ... 27

Figure 9. Agent-based model of kanban-based scheduling system 29

Figure 10. Information flow through KSS .. 31

Figure 11. Example from KSS model run ... 32

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 8

 UNCLASSIFIED

This page intentionally left blank

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 9

 UNCLASSIFIED

1 SUMMARY

1.1 PURPOSE OF RESEARCH

This research evaluates the use of on-demand (pull or kanban) scheduling approaches in
systems engineering where rapid response software development projects incrementally
evolve capabilities of existing systems and/or systems of systems. It is hypothesized that
such systems could provide more effective integration and use of scarce systems
engineering resources, enhance flexibility and predictability over complex master
schedules, improve visibility and coordination across multiple projects, lower
governance overhead, and achieve higher system-wide value earlier.

1.2 WORK ACCOMPLISHED

A general kanban-based scheduling system was defined and coupled with a service-
oriented approach to systems engineering to develop an approach for integrating
multiple related projects with a resource pool of systems engineers. A number of
simulations have been developed to investigate whether the hypothesized benefits
seemed likely to result from an in vivo implementation.

1.3 FINDINGS

In developing the simulations it became clear the complexity of the environment and the
nature of both kanban scheduling and service-oriented systems engineering dictated a
hybrid model with discrete-event, agent-based and continuous components. We have
explored interactions between the modeling components. Current simulations make
quantitative assumptions for the baseline cases and approximate well-tuned kanban
processes executed by proficient practitioners and the results have been in line with
expectations. However, in order to gain sufficient confidence for in vivo
experimentation, we will need better project data to parameterize and calibrate the
models for the sponsor’s rapid response environment. Access to the current simulations
is available online at http://softwareprocessdynamics.org/models/se_kanban/.

1.4 RESEARCH RESULTS

Beyond the findings as presented, the following research accomplishments have been
achieved:

 Two peer-reviewed conference papers have been written; another is in process An
international advisory working group has been established and has contributed to
this work.

 Two peer-reviewed conference papers have been accepted; two others have been
submitted

 One international conference workshop on the subject has been conducted and a

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 10

 UNCLASSIFIED

second has been accepted for conduct this spring

 Two doctoral candidates are using this work in their dissertation approaches

1.5 NEXT STEPS

In Phase 2 we will integrate the best aspects of each type of model into a demonstration
toolset which can take actual or estimated data provided by an organization and indicate
how using the defined kanban, service-oriented approach might improve their current
process performance. The intent is then to provide that toolset to a variety of
organizations with similar environments to gather additional baseline data to improve
the simulations.

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 11

 UNCLASSIFIED

2 INTRODUCTION

Traditional systems engineering (SE) developed half a century ago, primarily driven by
the challenges faced in the aerospace and defense industries. The environment was
fairly uniform – hardware-driven, long lived, single mission. The result of this
uniformity was practices that worked well in that specific context were seen as ―best
practices,‖ and came to define the discipline of systems engineering. In the last few
decades, system contexts have multiplied, and the speed of change in both needs and
solution technologies has accelerated. This has led to an inherent loss of determinism—
requirements are less tangible, more evolving, and sometimes emergent and systems are
both complex and constantly adapting. The practice of systems engineering, with its
roots in long-term, primarily hardware projects, has not kept pace.

Engineering principles involving agility and leanness have been adopted to address non-
determinism in software systems. They use iterative and spiral concepts, require less
traditional ceremony, maintain closer interaction with stakeholders, and are based on
best practice, underlying theory and overarching principles. Combining agile-lean
software experience with system engineering fundamentals can provide practical,
principle-driven agile-lean systems engineering approaches for the design of complex or
evolving hardware-software-human systems.

This research task examined one of those approaches, kanban (pull) scheduling
techniques, to determine its applicability to systems and software engineering in a rapid
response environment. The task developed a general kanban approach, a specific
kanban-based process for supporting SE in rapid response environments, and simulated
that process as well as traditional processes to determine if there were gains in
effectiveness and value.

2.1 KANBAN AS A STARTING PLACE

A kanban (signal card) approach is a form of on-demand scheduling that provides a
visual means of managing the flow within a process. The signal cards are created to the
agreed capacity of the process and one card is associated with each piece of work. In
manufacturing, work can mean the creation of a part, the integration of a part into an
assembly, the completion of a particular analysis process, or whatever bounded and
completeable activity you wish to track through the process. Once all of the cards have
been associated, no more work in that process can begin until some piece of work is
completed and the card becomes available. A common example of a simple kanban is
the use of a limited number of tickets for entry into the Japanese Imperial Gardens [8].
The fundamental idea is to use visual signals to synchronize the flow of work with
process capacity, limit the waste of work interruption, minimize excess inventory or
delay due to shortage, prevent unnecessary rework, and provide a means of tracking
work progress.

In knowledge work, the components of production are ideas and information [10, 11]. In
software and systems, kanban systems have evolved into a means of smoothing flow by

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 12

 UNCLASSIFIED

balancing work with resource capability. The concept was extended to include the
limiting of work in progress according to capacity. Work cannot be started until there is
an available appropriate resource. In that way, it is characterized as an on-demand or
―pull‖ system, since the work is pulled into the activity as capacity is available rather
than ―pushed‖ via a schedule.

A kanban system is a visually monitored set of activities, where each activity has its own
ready queue and set of resources to add value to work units that flow through it. The fact
that queues are explicit in the system allows costs of delay and other usually invisible
aspects of scheduling to be front and center in decision making. Queues also provide a
vast body of experience and underlying science from the queuing theory discipline.
Control of the kanban system is generally maintained through batch size, Work in
Progress (WIP) limits and Classes-of-Service (COS) definitions that prioritize work with
respect to risk.

 The visual representation of work is critical to kanban success, because it provides
immediate understanding of the state of flow through the set of activities. This
transparency makes process anomalies (both common and special cause) or resource
issues easily visible, enabling the team to recognize and react immediately to resolve the
issue. Flow through the kanban system is measured and tracked through statistical
methods that support tuning the control parameters to improve the system. Flow
measures also provide a good handle for effectiveness comparison. Because the team
and management interact with the kanban board and collectively solve problems, this
aspect is important in achieving continuous improvement (kaizen).

WIP is partially-completed work, equivalent to the manufacturing concept of parts
inventory waiting to be processed by a production step. WIP accumulates ahead of
bottlenecks unless upstream production is curtailed or the bottleneck resolved [12]. WIP
in knowledge work can be roughly associated to the number of work items that have
been started and not delivered. Limiting WIP is a concept to control flow and enhance
value by specifically limiting the amount of work to be assigned to a set of resources (a
WIP Limit). WIP limits accomplish several goals: they lower the context-switching
overhead that impacts individuals or teams attempting to handle several simultaneous
work items; they accelerate useful value by completing work in progress before starting
new work; and, they provide for reasonable and sustainable resource work loads.

Using small batch sizes is a supporting concept to WIP. Reducing batch size limits
rework and provide flexibility in scheduling and response to unforeseen change. Smaller
batch sizes help stabilize the process flow and allow downstream processes to consume
the batches smoothly, rather than in a start-and-stop fashion that makes inefficient use
of resources. The move from ―one step to glory‖ system initiatives to iterative,
deployable increments is an example of reducing batch size. Incremental builds and
ongoing, continuous integration also approximate the effect of small batch sizes.

For a different approach to describing kanban, see Mike Burrows’ Kanban in a Nutshell
(http://positiveincline.com/index.php/2010/03/kanban-in-a-nutshell/)

In the remainder of the paper we will refer to the proposed approach as a kanban-based
scheduling system (KSS). While not a true kanban in the manufacturing sense, the
characteristics are sufficiently similar to support the name.

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 13

 UNCLASSIFIED

2.2 PREDICTED BENEFITS OF THE PROPOSED APPROACH

A workshop was held January 27-28 2010 to discuss the development of a 3-year
roadmap for transforming systems engineering. A number of issues identified and
discussed in that meeting are addressed by the following benefits likely to accrue from
the application of this research.

2.2.1 More effective integration and use of scarce systems

engineering resources

Using a KSS and applying a model of SE based on continuous activities and individually
requested services is a value-based way to prioritize the use of scarce SE resources
across multiple projects. The value function within the next-work selection policies can
be tailored to provide efficient and effective scheduling that maximizes the value
provided by the resource based on multiple, system-wide parameters. Additionally,
having service requests including time vs. value parameters can help determine if the
delay of other service requests fulfillment is warranted by the current service request.
This is addressed further under the value function discussion.

2.2.2 Flexibility and predictability

SE activities are generally designed for pre-specifiable, deterministic (complete and
traceable) requirements and schedules. There is often an overdependence on
unnecessary formal ceremony and fairly rigid schedules. Using cadence rather than
schedule can provide efficient SE flow with flexibility by operating with shorter planning
horizons and on-demand services. We believe that the CoS concept not only handles
expedite and date-certain conditions, but also supports cross-kanban synchronization.
Even though the planning is dynamic and the selection of the next piece of work to do
asynchronous, we believe the use of a value-based selection function, a time-cognizant
service request, customized Classes of Service, and a statistically controlled cadence
provide a sufficient level of predictability where necessary.

2.2.3 Visibility and coordination across multiple projects

In highly concurrent engineering, the KSS provides a means of synchronizing activities
across mutually dependent teams by coordinating their activities through changing
value functions (work item priority) according to the degree of data completeness and
maturity (risk of change). It also provides an excellent way to show where work items
are and the status of work-in-progress and queued or blocked work. The ability of teams
to have a common visualization of work item status also encourages a sense of collective
responsibility.

In addition, the on-demand/limited planning horizon of the KSS actually reduces the
impact of long latency dependency between work items by not beginning work on items
that would then languish until another work item was complete.

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 14

 UNCLASSIFIED

2.2.4 Low governance overhead

Implementing a KSS doesn’t require major changes in the way work is accomplished or
imply specific organizational structures like other agile methods (e.g. Scrum). Such
systems can be set up in individual projects and allowed to evolve into more effective
governance over time as the project and the organization as a whole understand the best
way to attain value from the practices. Even the systems engineering resource
scheduling can be implemented with very little organizational impact. Practitioners
make most decisions using parameters set by management (e.g. WIP limits) and their
own understanding of the needs. Issues are usually identifiable from walking the visible
representation of the flow status and so are made clear to all who take part in the
scheduling, including management. Metrics are inherent to the system, clearly identify
problems, and track improvements. Most problems tend to be self-correcting.

2.2.5 Increased project and system value delivered earlier

The core rationale of most lean and agile approaches is to provide value to the customer
as quickly as possible. In rapid development environments this is particularly
important. By limiting WIP, more closely integrating the SE and project engineering
activities, and providing both specific project and system-wide work item value
determination, the KSS provides an intentional approach to achieving early value.
Nevertheless, through Classes of Service, the KSS still provides for intangible or long-
term investment activities to flow through the system with minimal impact on urgent
activities.

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 15

 UNCLASSIFIED

3 THE KANBAN-BASED SCHEDULING SYSTEM

3.1 DEFINITION OF A KSS

In Figures 1 and 2, and Table 1, we define our concept of a KSS. We intend that this
model be recursive at many levels to allow for complex implementations. While we
currently believe work items and their associated parameters coupled with the visual
representation of flow are sufficient, we may introduce new concepts to enable better
communications and synchronization between the various interacting systems.

Figure 1. Kanban Scheduling System Model

Figure 1 shows the core concept of the KSS. This core concept can be thought of as a
building block or even a recursive application of the fundamentals discussed in Section
2. In general, the upstream customer for the service provided is responsible for
selecting the work that enters the KSS. This is usually done collaboratively with the KSS
to make sure that significant dependencies, date certain events, and other special
concerns are understood. As a resource becomes available, the highest value work item
is executed until it is complete, and then added to the completed work. Depending on
the delivery cadence, it may go directly to the downstream consumer or it may be held
until the next delivery date.

Ac vity		

ECoS,	WL=1,	(extends	
	ac vity	WL	if	necessary)	

SCoS,	WL=1	(included		
In	ac vity	WL)	

Ready	Queue	

Work	Flow	

Normal	Class	of	Service	Work	Item	(NCOS)	

WIP	

Ex	

Completed	
Work	

Special	Class	of	Service	Work	Item	(SCOS)	

Ex	

(WIP	Limit=6,	Resources=4)

1	 Resource	(Individually	numbered)	

1	

2	

3	

4	

1	

NCoS,	(WL=5)	

Ex	 Expedite	Class	of	Service	Work	Item	(ECOS)	

(Limit=6)

Upstream	Customers	
Work	(Backlog)		

Work	Item	wai ng	for	selec on	

Normal	Class	of	Service	Work	Item	(NCOS)	

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 16

 UNCLASSIFIED

A scheduling cadence provides regular meetings of the KSS team to assess the work flow
and determine if resources should be moved between activities, WIP limits adjusted, or
other actions taken. Often, this is a daily activity, but the actual planning horizon
selected and the nature of the work items should be used to establish the most cost
effective cadence. Planning horizon is based on the visibility into upcoming work and is
dependent on the WIP and ready queue limits.

The illustration shows a work item with a CoS of expedite coming into the KSS.
According to the policies established for this KSS, expedite is allowed to bump up the
WIP limit for the activity, but the activity is itself limited to only one expedite CoS work
item at a time. The entry of the expedited work item blocks the activity from pulling any
additional work items, and causes resource #1 to suspend work on the their current
work item, thus blocking it as well. In this case, the team felt that resource 1 was
sufficient to accomplish the expedited work item, and that allowing the remaining
resources to continue their current work items best served the KSS flow. If this turned
out to be wrong, adjustments could be made immediately to resolve the imbalance.

In this illustration, the KSS consists of a single activity – and that is generally how the
upstream customer would view it. However, it is easy enough to see that the activity and
its associated ready queue could be subdivided into multiple linked instances. These
could be linked sequentially or could represent different specializations for different
types of services, each representing a full KSS. For example, there could be an initial
activity that determines the relative value of a work item (its precedence given the
current status of resources) and assigns it to the appropriate specialized service KSS.

Figure 2. Kanban Scheduling System Hierarchy

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 17

 UNCLASSIFIED

Table 1. Kanban Scheduling System Definitions

Work Item The item controlled in the kanban system. A work item has a definition, a Class of Service, and often a rough

estimate of work effort required. The value of a work item is determined by a value function, and can vary over

time (particularly for work items of special CoS such as expedite and time certain).

Effort

Required

The approximate size of work in person-units of time. May be a negotiated function of desired quality.

Transit Time The time measured from entrance of a particular work item into the KSS to its delivery to the customer

Backlog A customer-prioritized queue containing upstream customer work items awaiting service by a kanban system.

Cadence

(prioritization

and delivery)

The rhythm of the production system. Prioritization cadence defines the planning horizon for the KSS. Delivery

cadence allows bundling work items if desired by the downstream customer. Not necessarily an iteration. Kanban

still allows for iterations but decouples prioritization and delivery to allow them to vary independently of cycle

time according to customer desires, domain, and costs.

Activity Value-adding work that can be determined as complete. Includes: ready queue, a set of resources, and a WIP

Limit. Allows allocation of effort to complete a work item.

Ready Queue A limited queue that holds work items awaiting processing by an activity. The items in the queue may be

considered part of the Activity WIP or the queue may have a specific limit. The queue cannot be unbounded in

order to maintain the kanban pull effect.

Resource An agent for accomplishing work; may be generic or have specialized expertise. May include specific

productivity. Usually associated with a specific activity, but may be shared across activities. Resources can

swarm to alleviate bottlenecks or handle certain Classes of Service.

Work Item

Selection

Policies

Rules for selecting the next work item from the backlog or a ready queue when an activity has less work than its

WIP limit; depends on both Class of Service and Value Function, and leads to specific flow behaviors.

Class of

Service

Provides a variety of handling options for work items. May have a corresponding WIP limit for each activity to

provide guaranteed access for work of that class of service. CoS WIP limit must be less than the activity’s overall

WIP limit. Examples are expedite, date-certain and normal. CoS may be disruptive (such as expedite) and is the

only way to suspend work in progress.

Value

Function

Estimates the current value of a work item within a CoS for use in the selection algorithm. Can be simple (null

value function would produce FIFO) or a complex, multiple kanban-system, multi-factor method considering

shared scarce resources and multiple cost/risk factors. The means of prioritizing work items. There may be

multiple value functions that return independently established values for each hierarchical layer within the KSS

For example, in SE, the overall systemic value of a work item may differ from the one that the project-level value

function would return.

WIP Limit Limit of work items allowed in progress at one time within an activity. Often initially set to twice the number of

resources, but used to regulate and optimize flow and slack.

Visible

Representation

A common, visual indication of work flow through the activities; Often a columnar display of activities and

queues. May be manual or automated. Shows status of all work-in-progress, blocked work, WIP limits. It is a

characteristic that provides transparency enabling better management. Difficult to model. Provides system wide

understanding of status and value, and encourages collective responsibility for flow.

Flow Metrics Includes cumulative flow charting and average transit time.

3.2 SYSTEMS ENGINEERING AS A SERVICE

Systems engineering has struggled with acceptance in rapid-response environments,
partly because it tends to operate with a broader scope and with the assumption that a
holistic view requires a deeper and fuller level of knowledge than is often available in the
rapid response time frame. In rapid response environments, the time scale constrains
the project scope, and detailed analysis up front is perceived as less achievable. Agile
and lean assume holism comes from a learning process and is valuable even when
incomplete.

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 18

 UNCLASSIFIED

The idea of using an on-demand scheduling system for systems engineering in the rapid
development environment is an attempt to merge the SE flow and the software
development project flow rather than simply lay SE functions on top of project activities
without concern for the rapid-response constraints. Our initial model of such a system-
wide KSS that includes both systems and software engineering is shown in Figure 3. We
believe it will support better integration of SE into the rapid response software
environment, better utilize scarce systems engineering resources, and improve the
overall system-wide performance through a shared, more holistic resource allocation
component.

Figure 3. Overview of SE as a Service concept

In general, systems engineering is involved in three kinds of activities in rapid response
environments: Up front, continuous, and requested. Up front activities are critical in
greenfield projects, but are important in all systems and system of systems evolution.
They include creating operational concepts, needs analysis, and architectural
definitions. Continuous SE activities are ongoing, system–level activities (e.g.
architecture, environmental risk management). These require not only substantial time,
but also the maintenance and evolution of long-term, persistent artifacts that support
development across multiple projects. Requested activities are generally specific to
individual projects (e.g. trade studies, interface management), but will certainly draw on
the persistent SE artifacts and knowledge.

By viewing the development and use of persistent artifacts as key components of
services provided to various projects, SE can be opportunistic in applying its cross-
project view and understanding of the larger environment to specific projects
individually or in groups. It can also broker information between individual projects

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 19

 UNCLASSIFIED

where there may be contractual or access barriers. When a system-wide issue or external
change occurs, SE can negotiate or unilaterally add or modify work items within affected
projects to ensure that the broader issue is handled in an effective and compatible way.
This is reminiscent of the agile management layer described in the iteration
management approach in [13], and the approach envisioned can extend that concept
throughout the rapid response lifecycle and across the multiple projects.

SE performs its services in parallel to those activities in the requesting project and then
pushes the results to the requestor as soon as available. This is aimed at supporting the
timeliness of projects, so that work can continue, even if at a higher risk of rework,
unless waiting for the results is blocking all other work in the project (not a good thing).

SE services require persistent artifacts and knowledge for both requestor-specific and
total system artifacts/understanding. The quality of a service could be pre-specified,
specified as a parameter or input with service request, or could be negotiated as a
function of typical value and time available to provide the service. In a KSS, SE services
can be thought of as a single activity, although some activities, particularly those up
front, are likely to be complex enough to have their own set of value adding activities
and specialized resources.

The value function used to select the next request to be handled must be designed to
identify the highest cost of delay among the ready work items in terms of the overall
system value. This allows SE to be as effective as possible in providing its services across
the enterprise. The function could be based on several parameters that are attributes of
individual projects, individual requests, or system-wide activities. Possibilities include
the maturity of the requesting project, lifecycle point of requesting project, criticality of
the requesting project, and value/cost of delay/priority/class of service or other
characteristics of the work impacted by the service requested. The details will be critical
to achieve system wide benefits without impacting individual project timeliness. Only
through modeling is the impact of various approaches to the value function
determinable. In fact, modeling should be able to help identify the sweet spot of the
amount and type of SE activity that produces the most value with the lowest impact to
quality. Statistical and other measures will be needed to track the performance and
improve the value function in vivo.

Table 2 is based on the US DoD Systems Engineering Guide for Systems of Systems [20]. It
describes categories of services, specific characteristics, and provides initial estimates
(high-medium-low) of the probability of an activity within the category occurring during
the life cycle phases defined by the Rational Unified Process (RUP). A number of
services can be defined in each category, and if needed, such definitions will be part of
follow on research as the models are evolved. Sources for developing these services
could include research into relevant standards (e.g. ISO/IEC-15288, CMMI), handbooks
(e.g. NASA, OSD, INCOSE), and current investigations into Model-based Systems
Engineering (MBSE) such as industry tools (e.g. RUP SE, Vitech MBSE), INCOSE and
NDIA studies, and work by the Object Management Group (OMG).

It should be noted, however, that developing the concept of SE services is outside the
scope of the first phase work documented in this report. The actual definitions of
services will depend on the context of the projects and the development organizations.
In our simulations, we have used the more general value of work effort rather than

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 20

 UNCLASSIFIED

detailing specific work item subject matter. In phase two, however, we intend to
establish mechanics and templates for defining SE services and organizational
constructs to support the KSS activities – particularly those that support collaborative
engagement and collective responsibility for the system outcomes.

Table 2. Systems engineering service categories (adapted from [20])

Category Description of activities within

the category

Usage Probability of service being required in phase

Inception Elaboration Construction Transition

Translating Capability

Objectives

Proxy for customer; translating

needs into requirements and

specifications; support for

requirements management

activities; enterprise and system

level requirements allocation

Up front;

Continuous;

Requested

High Medium Low Low

Understanding

Systems and

Relationships

View across multiple projects;

Persistent memory across time and

teams

Up front;

Continuous;

Requested

High Medium Medium Medium

Assessing Performance

Against Capability

Objectives

Validation of TPMs or other

performance requirements; typical

V&V type activities; operational

assessments

Up front;

Continuous;

Requested

Low Medium Medium High

Developing and

Evolving Architecture

Providing design guidance and

supporting common architectural

patterns across multiple projects;

optimizing performance,

throughput, maintenance through

interoperable systems and system

components

Continuous;

Requested

Medium High Medium Low

Monitoring and

Assessing Changes

Supporting flexibility, resilience

and agility; providing surveillance

of the external environment and

identifying issues and changes that

might affect projects, the system or

the enterprise (e.g. changes to

COTS products, external

interfaces, systems, operating

environments)

Continuous;

Requested

Low Medium High Medium

Trade Studies And

Decision Support

Supporting system-informed

decision making by providing

independent, competent analytical

services

Up front;

Requested

High High Medium Low

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 21

 UNCLASSIFIED

4 MODELING AND SIMULATION OF THE KSS

APPROACH

4.1 GOALS OF THE MODELS

The overall goal of the modeling component of this research task is to verify whether
organizing projects as a set of cooperating kanbans (a kanban-based scheduling system,
KSS) results in better project performance. Performance is measured through a value
function, and better performance is defined as achieving value along one or more of the
following scales, which seem most relevant to the rapid-response environment:

 Shortest-time to useful-value

 Highest-value for a given-time

 Lowest variation in transit time

The research question we seek to answer is: can value be improved through a KSS that
controls the interaction of a resource-limited systems engineering team with one or
more development teams via a service-oriented implementation. We hypothesize that if
systems engineering produces a partial system definition (context, requirements, etc.)
earlier, and releases that definition to development, the defects inherent in that less-
complete definition can be resolved through coordinated KSS interactions between
development and systems engineering. In this way, the total value realized by the project
within its critical availability time limits is improved over the traditional up-front and
separated parallel design process.

The web-based discrete-event and continuous hybrid simulation model is available at
http://softwareprocessdynamics.org/models/se_kanban/. It is the source of the figures
in Section 4.3. In Phase 2 this model may also incorporate the agent-based perspective.

4.2 MODELING STRATEGIES

Three approaches to modeling were considered for this research:

• System dynamics modeling
• Discrete-event modeling
• Agent-based modeling

As seen in Figure 4, each of these modeling approaches has advantages for the problem
domain and level of abstraction.

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 22

 UNCLASSIFIED

Figure 4. Modeling approach vs. abstraction level [17]

System dynamics models operate at a high-level of abstraction, and require the modeler
to understand a priori the relationships among concepts, which are modeled as a set of
interacting feedback loops [17]. They work by accumulating continuous flow quantities
(representing a quantity of documents, work items, personnel, etc.) over time to create
cumulative ―levels‖ of those quantities. A given flow and its associated levels are
homogeneous—that is, not divisible into discrete items—and modeling concepts of
different types requires creating a separate flow for each type. In this research, the
attributes of different work items—arrival time, duration, value-function, and desired
quality-function—are expected to affect the overall performance of the system. The
homogeneity of flows in systems dynamics models therefore seem less well-suited to
simulate these types of interactions.

Discrete-event models operate at a low-level of abstraction, and consider the effect of
events that occur at specific points in time by simulating the movement of discrete
entities through blocks [17]. An entity (most likely representing an individual work item)
is a passive construct, but can have individual characteristics that affect how the entity is
processed in the simulation, for each block through which it passes. These per-entity
characteristics, unlike the homogeneous flows of systems dynamics, seem better suited
for modeling the attributes of the specific work items in this research. A discrete-event
model is not well-suited to modify the emergent behavior of agents that act on these
entities, however, and this behavior must instead be understood a priori and
programmed into the model.

Agent-based models are similar to discrete-event models, but the entities modeled can
be active objects, having attributes and performance, and active agents, having
behaviors and executing work processes. While the behavior of the individual agents,
and actions that can be taken by the objects, are pre-specified, system-level behavior
may emerge from the interaction of agents with objects, and with other agents, that may
be impossible to predict, and hence to model using the other modeling approaches. This

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 23

 UNCLASSIFIED

aspect of agent-based models seems well-suited to the research problem, since the
intentional behavior of the human agents in projects is relatively simple and well-
known, while the emergent systemic results of their interactions in a KSS are not.
Agent-based models have the further capability of modeling beliefs and desires, which
although not explored in this research, may be useful to construct more realistic
behavior in the future.

Discrete event entities are needed because individual work item characteristics are
critical in an actual Kanban management scheduling process. The different priorities of
the work items are used for scheduling, and the WIP itself is managed as a discrete
quantity. Individual performers are also mapped to work items and this aspect can be
modeled with discrete attributes.

There are also important continuous parameters that drive agent behavior, including
perception delays, feedback effects, schedule pressure and deadlines, motivation and
other management pressures. A combined approach could provide a richer and more
holistic perspective with interacting model compartments.

We recognize that in different applications any of the modeling paradigms may be more
efficient. Agent-based modeling may be less efficient than system dynamics or discrete-
event, harder to develop and not a good match for a given problem [17]. In this phase
we have found that agent-based modeling in Brahms has been difficult requiring
workarounds. For example, multiple resources working on the same work item
necessitated extra logic and will probably not scale up with the modeling scenarios.

Combined hybrid modeling is often applicable [17], [19]. For example, in this phase we
have used discrete events from the work item scheduling to drive continuous flows.
Agent-based and/or discrete approaches could be used for event generation.

Therefore we are not limiting our modeling approach to a single view, because our needs
dictate that all approaches are valuable and they can be connected. A comparison of
approaches in Table 3 for systems and software processes supplementing [18]. It is
updated for agent-based modeling.

Table 3. Comparison of Modeling Approaches (adapted from [18])

 System Dynamics Discrete Event Agent-based

Advantages Accurately captures the effects of

feedback

Clear representation of the

relationships between dynamic

variables

CPU efficiency

Attributes allow entities to vary

Queues and interdependence

capture resource constraints

Define bottom-up behavior of

individuals

Requires no knowledge of global

interdependencies

Disadvantages Sequential activities are more

difficult to represent

No ability to represent entities or

attributes

Continuously changing variables

are not modeled accurately

No mechanism for representing

states

Overhead for agents sharing

work items

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 24

 UNCLASSIFIED

4.3 DISCRETE-EVENT AND CONTINUOUS MODELS AND TOOL

The discrete-event and continuous model is implemented in a web-based tool. It is
parameterized for users to input the number of tasks1, effort per task (deterministic or
probabilistic), WIP limit, staffing level and value parameters for the tasks.

It models the Kanban WIP limit for a variable staff size with non-linear productivity.
The non-linearity is due to context-switching losses when resources are split across
multiple tasks. It contains two levels of value for the project and organization:

 Project Value – Value of the task towards fulfilling the project objectives (0-10).

 SE Value – Value of the task for the systems engineering enterprise at the
organizational level. (0-10).

Continuous flows for tasks and value accumulation are driven by the discrete events.
The corresponding rates are pulsed at the event times for task completion and value
attainment. The aggregate accumulations are used for continuous quantities such as
schedule pressure due to do progress gaps. The continuous parameters are in turn
available to the agent-based model compartment for simulating individual agent
behaviors (e.g. peoples’ delayed perceptions of trends and their reactions).

Sample runs of the DE simulation are shown in Figures 5-8. In Figure 5-7 the graphs
are Gantt charts with tasks down the page and time running horizontally. Visualizing a
vertical line on the Gantt chart and then counting the intersected tasks can determine
the current WIP size at any time. The number of tasks concurrently active cannot
exceed the WIP limit.

For each run a normal distribution is used to generate task effort, and the duration is
calculated using the available staff and WIP size. These figures represent a baseline case
of a nominal 90 day project.

Figure 6 shows a case where 10% of the software tasks require rework. In subsequent
models the percent of rework will be directly impacted by systems engineering.

A multiple project scenario at the enterprise level is shown in Figure 7. The top tasks
are systems engineering service tasks that support the three software projects (red, blue
and green) below it. The initial tasks numbered 1.0, 2.0 and 3.0 are project initiation
tasks. The other tasks are in continuous support of software engineering who has
―kicked back‖ some tasks requiring more work. These tasks are numbered the same in
both swim lanes (e.g. Task 2.2, Task 3.2, etc.)

The diagram also displays project priorities among the projects competing for systems
engineering support. In this scenario Project 1 in red has higher priority. This is why
Task 3.3 in Project 3 has to wait for the Project 1 tasks in red to complete first.

1 In the discussion of discrete and continuous simulation, ―tasks‖ represent KSS work items.

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 25

 UNCLASSIFIED

Figure 5. Example Results

Systems Engineering Kanban Process Simulation

SE Tasks (1-10) 4 # SE People (1-5)

#Software Tasks (5-40) 20 #Software People (1-10) 5

Monte Carlo Simulation Off •

~
Results
Effort = 4267.2 Person-Hours
Schedule = 11a.4 Days
Value = 111

SE WIP Limit (1-10) 2

Software WIP Limit (1-10) 5

Kanban Gantt (SE WIP=2, SWE WIP=5)

Task SEI
Task SE4
Task SE2
Task SE3
Task S
Task 20
Task 3
Task 17
Task 14
Task S
Task 4
Task 13
Task IS
Task 9
Task 12
Task 19
Task 2
Task 16
Task 18
Task 10
Task 7
Task 1
Task 11
Task S

Task I Project Value I SE Value I IPersEo~~~ours)
6 110 19 11335
14 17 1 1169.6

3 Ia 11 11a49
20 19 2 1234.1

17 17 13 134a9
13 17 a l22a.a

5 17 15 12a93
4 17 6 1255.1

15 16 110 12255
9 16 3 l119.a

19 15 17 11639
16 15 4 1141.6

12 15 12 1205 7
2 15 10 1260

1a 14 15 1250a
1 13 1 1121.6

7 13 15 1242 1
a 12 6 1147.1

10 13 Fl2a2.5
11 12 -;o----1262 4

Days

Resource(s)

1 SWE

1 SWE

1 SWE

1 SWE

1 SWE

1 SWE

1 SWE

1 SWE

1 SWE

1 SWE

1 SWE

1 SWE

1 SWE

1 SWE

1 SWE

1 SWE

1 SWE

1 SWE

1 SWE

1 SWE

Duration Start Finish I Cumulative
Value

16.7 0 16.7 110

21.2 0 21.2 117

23.1 0 23.1 125

29.3 0 29.3 134

43.6 0 43.6 141

2a.6 23.1 51.7 l4a

36.2 16.7 52.9 155

31.9 21.2 53.1 162

2a.2 29.3 57.5 16a

15 43.6 5a.6 174

20.5 52.9 73.4 179

17.7 57.5 75.2 la4

25.7 51.7 77.4 lag

32.5 53.1 a5.6 194

31.4 5a.6 90 lga

15.2 77.4 92.6 1101

30.3 75.2 105.51 104

1a.4 90 10a.4l 106

35.3 73.4 10a.7 1109

32.a a5.6 11a.41 111

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 26

 UNCLASSIFIED

Figure 6. Example Project Gantt with Rework

Figure 7. Example Enterprise Project Gantt with SE Services

Monte Carlo simulation can be invoked for multiple runs. Figure 8 shows sample
results with output probability distributions for the four primary indicators. This
capability will be enhanced in Phase 2 including normalizing the value outputs.

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 27

 UNCLASSIFIED

Figure 8. Example Monte Carlo Results

4.4 AGENT-BASED MODELS AND TOOLS

4.4.1 Tool selection

Two agent-based modeling tools were examined for use in this research: the Recursive
Porous Agent Simulation Toolkit (Repast), originally developed by the University of
Chicago; and Brahms, developed for NASA Ames Research Center. Repast is an open-
source toolkit that researchers can use to develop agent-based models (ABMs) in Java,
Python, and many other languages. Brahms is a Java-based proprietary tool, licensed at
no charge for academic use, that provides an integrated framework within which ABMs
are developed. Other tools considered early in the selection process include MASON
and Swarm.

Both Repast and Brahms have been used for modeling social behavior networks of
autonomous individuals. Repast appears to offer a more powerful modeling framework,
but is a low-level toolkit that requires substantial programming to produce a functioning
model. While Repast also has a graphical interface for constructing simple models, it
did not appear suitable to construct the modeling elements necessary for this research.
Brahms is oriented specifically toward modeling work processes, and is used within
NASA for modeling spaceship crew tasking such as extra-vehicular activities (EVAs).

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 28

 UNCLASSIFIED

Brahms uses a belief-desire-intention (BDI) architecture and is programmed using a
relatively simple, production-rule like syntax.

Both tools exhibit steep learning curves. Repast requires the modeler to understand the
capabilities provided by an extensive application programming interface (API), and then
to program the model directly in Java using this API. It does not appear to offer high-
level facilities to communicate among agents, which must instead be explicitly
programmed. Brahms operates at a higher level of abstraction, providing a direct means
of representing world facts and agent beliefs, a rule-based technique for specifying the
activities that arise from given fact/belief states, and built-in functions for
communicating facts and beliefs among objects and agents. It also provides a facility,
not used in the present research, to augment a model with capabilities programmed
directly in Java.

Due to the short timeframe of this research task, the work process-oriented Brahms was
considered the lower risk approach of the two. Once the model design is fully
established and preliminary results are obtained, the additional analysis tools that
Repast provides may make it worthwhile to convert the model in subsequent research.

4.4.2 Agent-based model design

Similar to the discrete-event simulation strategy described in (Anderson et al. 2011), the
elements of the agent-based model include the concepts:

 Kanban Scheduling System (Kanban)

 Ready queue (The agent-based model uses the ActivityQueue object to hold
WorkItems in a WIP-limited Activity, thus modeling the Ready Queue. A
ReleaseQueue models the next activity’s ReadyQueue or delivery downstream)

 Activities (In the agent-based model, an Activity object associates Resources with
a particular project activity, and holds the Queue of in-process WorkItems.)

 Resources

 Work Items

 Customer

 Work-in-process (WIP) limits

4.4.2.1 Model workflow

Figure 9 diagrams the relationship of these concepts within the agent-based model for
the KSS. The model is composed of one or more KSSs, each of which represents a
project or, as will be seen, a pan-project team. Each KSS is composed of a ready queue
and one or more serialized activities. Resources work within an activity, pulling
completed work items from the next upstream activity (or incomplete items from the
backlog, if the resource is in the first activity of a kanban), and taking some amount of
time to complete each work item. The release queue pulls completed work items from
the last activity of a kanban, at which point the work item is considered fully complete.
The customer is the source of all work items that enter the system, which are pushed
onto the backlog of one of the kanbans for processing.

Resources are the human agents whose actions take incomplete work items and
transform them, with more or less fidelity and taking varying amounts of time, into

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 29

 UNCLASSIFIED

completed work items. The activity within which each resource works is constrained to
a maximum work-in-process (WIP) limit, and at any point in time each activity contains
no more than the WIP-limited number of work items, queued or in-process. Within
each activity, some work items are queued awaiting the next available resource, and
some are being processed. Work items are assigned an estimated duration and a value
function at creation, and move through the system by being pulled from upstream
activities into the next downstream activity, or the release queue.

This modeling approach offers additional flexibility over the model employed by
[Anderson et al.]. The simplest system can be modeled with a single-activity kanban,
with its backlog and release queues. More complex models can have multiple kanbans,
each with multiple activities, where the release queue of the upstream kanban feeds the
backlog queue of downstream kanbans. This flexibility allows the model to show how
the interaction of multiple kanbans might affect project performance.

Figure 9. Agent-based model of kanban-based scheduling system

4.4.2.2 Development-SE feedback

The high-level flow of information through the KSS is presented in Figure 10. The
customer is the source of high-level requirements inserted into the workflow by pushing

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 30

 UNCLASSIFIED

them to the backlog of the systems engineering kanban. Systems engineering elaborates
each requirements into multiple lower-level work items, assigns a value function to
each, and pushes the work items into the backlog of one or more development kanbans.
The resources assigned to the development kanbans select the next work item based on
its value function, and take some amount of time to complete it. Once complete, the
work item is pulled by the next downstream activity, which is not described in this
diagram.

We assume that, due to the time constraints of the rapid-response environment, systems
engineering creates work items and releases them to development even though their
design might be incomplete. This early release is necessary to avoid the large delay that
would be inherent in performing a ―big design up front‖ (BDUF), and enables
development to proceed in parallel with systems engineering. We further assume that
this partially-complete design leads to defects that might have been avoided or lessened
in BDUF, and that these defects are detected later in the development (or some
downstream) process. Such defects are then fed back as a service request, tagged with
the time-criticality of the request, for systems engineering to resolve. The time-
criticality informs systems engineering how quickly the request must be resolved.

Systems engineering resolves service requests with some defect rate that is proportional
to the time criticality—that is, with some probability, requests that must be serviced in a
shorter period will have more defects. Systems engineering completes the feedback loop
by pushing a work item that results from processing the service request, with its
potential additional defects, to the development kanban. The cycle may repeat if further
defects are detected during development of the completed request.

The initial models have evolved by simulating more complex behavior of the resource
agents, adding Brahms thoughtframes for the agent to ―realize‖ it needs work, or has
completed the work it has, and workframes for the agent to ―examine‖ the activity
queue and the work items it finds there. The queuing behavior of activities has been
separated out as its own object and generalized, allowing its use in other contexts. A
log-normal random distribution algorithm has been added, so that the actual
performance time of a particular work item varies randomly around the estimated
duration, favoring the performance taking longer than expected through the ―long-tail‖
distribution.

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 31

 UNCLASSIFIED

Figure 10. Information flow through KSS

Figure 11 illustrates an excerpt from the Brahms agent viewer screen, showing the
results of a short example simulation run. In this example, ten WorkItems have been
produced by the Customer, and pushed into the Backlog of the
SensorDevelopmentProject kanban. The Development activity of that kanban detects
that it is below its WIP limit, and pulls an item from the backlog into its waiting queue.
Once there, a Developer resource detects the WorkItem is present, and operates on it for

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 32

 UNCLASSIFIED

a period of time. Once the WorkItem is complete, another slot opens in the activity,
which again pulls the next WorkItem from the Backlog, which again the Developer
detects and works on. This cycle repeats until the Backlog is empty and all WorkItems
are complete.

Figure 11. Example from KSS model run

The Brahms source code for this model can be seen in Appendix B. This source code
shows the attributes, relations, activities, and workframes of the inanimate objects and
intentional agents comprising the model. In Brahms, objects detect the presence of
facts in the world, and take action based on these facts. Agents have beliefs about these
world-facts, which they in turn act upon. Both objects and agents specify their actions
using a production rule-like syntax, which is similar to the syntax used in many rule-
based expert systems.

4.5 MODELING SCENARIOS

The modeling scenarios chosen assume that there are multiple projects that are made up
of sequential 90-day spins. Each spin produces an intrinsic value that is some fraction of
that determined for the project at its inception. Significant defects, schedule slips,
changes to the external environment, conflicts with other projects are factors that may
reduce the value. Lower than expected defects, schedule advances, adaptation to other
parts of the system, changes to the external environment are factors that could increase
this value.

We are assuming development teams of 8-10 people and an SE team of similar size. The
projects each have around 200 assignable tasks that average about 24 hours of effort to
complete. In every case, we have assigned approximately 15% of the work to SE tasks,

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 33

 UNCLASSIFIED

with about 10% performed early in the spin (design/architectural/interface work) and
5% performed late (verification and validation work). This is in line with traditional
rules of thumb for projects of a similar size.

Randomness has been added so that task values and expected durations are distributed
normally and task actual durations distributed skewed to the plus side (generally tasks
take longer than estimated). Additionally, extra tasks may be added that represent
unplanned rework due to requirements, scope, political or technical changes within the
environment. There have been some simplifications applied to the model to meet the
time constraints of the project:

 All resources have the same skills and effectiveness/productivity

 A resource can only work on one task at a time

 Only one resource can work on a task at a time

It should be noted that these simplifications prevented us from modeling all the benefits
of WIP limits and small batches. However, this will be addressed in the next phase of
our research.

4.5.1 Scenario 1: Common

Reduced SE involvement up-front, some involvement through project
execution as change traffic, heavy involvement in back-end.

4.5.1.1 Rationale

This is the approach used by projects where SE is not well integrated. Although SE may
have developed (or understands an existing) system-level design, the development
projects ―go it alone,‖ either following their own understanding of the design, or
allowing a design to emerge as development proceeds. SE issues new requirements, or
inserts change requests during project execution, as deviation from the desired system-
level design is detected. As finished work items emerge from the project, their incidence
of defects is higher due to lack of a coordinated design, which causes rework.

4.5.1.2 Description and modeling considerations

This scenario will be modeled using the existing model constructs, but using a non-WIP
limited activity. The backlog will be pre-populated with a set of work items representing
the requirements as understood, which will be processed by Development resources in
random or FIFO order. If possible given model constraints, resources will switch among
work items before completing them to simulate context-switching losses. SE will add
new work items to the Development backlog throughout project execution, but at a low
rate of insertion, to simulate change traffic. Completed work items will, with some
probability, be considered defective, and be fed back to the backlog for re-processing, or
their value will be decreased.

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 34

 UNCLASSIFIED

4.5.2 Scenario 2: Traditional SE

Traditional up-front/back-end SE, with Big Design Up Front (BDUF)
delaying the start of development, which results in lower change traffic
and defect incidence

4.5.2.1 Rationale

This is a traditional approach to SE, which takes time to perform trade studies and
create a holistic design, but which also delays the start of development. The incidence of
change traffic and defects should be lower. It is possible that in spite of the lower defect
rate, however, lower total value may be delivered than Scenario 1, an effect that may be
exacerbated in short-cycle development. It will be interesting to see how modifying the
total project time, percent of time spent doing BDUF, and the change traffic and defect
rate affect the project value realized by this scenario with respect to Scenario 1. (This
scenario design resembles Architected Agile.)

4.5.2.2 Description and modeling considerations

This scenario will be modeled very similarly to Scenario 1, but shortening the amount of
development time by the percent of SE work done up-front, and lowering the rates of
new requirement- and defect-insertion. To model value-based SE, each work item may
have a value assigned to it, which Development resources could use to prioritize work,
perhaps with more or less fidelity. To model a KSS with this scenario, WIP limits could
be set on activities.

4.5.3 Scenario 3: KSS

Incremental SE, with some design up-front and design continuing
throughout development, interacting with projects using service-oriented
model

4.5.3.1 Rationale

This is the approach envisioned in this KSS research: buying additional development
time at the cost of less thorough up-front SE, and providing a mechanism for resolving
design issues through a service interface between development and SE. In this scenario,
SE will create new requirements at a relative high rate throughout project execution,
simulating their emergence as design activities mature. A higher defect insertion rate
than Scenario 2 will be used, but allowing an opportunity for SE to resolve defects,
through requests submitted to SE by Development. It is hypothesized that this
approach will yield both more timely performance and lower defect rates, resulting in
higher total project value.

4.5.3.2 Description and modeling considerations

This scenario enlarges the previous scenarios by adding a separate KSS for SE, with its
own backlog, activities, resources, and work items, to the KSS already established for
Development. SE and Development interact through work items exchanged between
their respective KSS’s. SE undertakes both continuous activities—creating new work

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 35

 UNCLASSIFIED

items for Development; and requested activities—responding to work item requests
inserted in its backlog by Development. Processing of a work item by Development will
continue while SE is processing a request about the work item, with a higher defect rate
resulting if SE does not respond quickly enough.

4.5.4 Scenario execution

The alternative scenarios as described are continuing to be created and run. To improve
the comparability of the scenarios, as many variables as possible are kept constant
between runs. The simulations allow seeding of the random number generator with a
constant value, so that the sequence of numbers, while still pseudo-random, is
repeatable in successive runs. This allows us to create work items with the same
durations in each scenario, to reduce the likelihood of a different distribution of task
estimated and actual durations affecting comparability.

The primary goal of the next phase is to evolve the simulations and run more carefully
constructed experiments for the scenarios already defined. We will also begin to validate
the simulation results against our hypotheses using carefully created and if possible,
actual data.

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 36

 UNCLASSIFIED

5 RESEARCH OUTCOMES AND NEXT STEPS

5.1 SUMMARY

This research has developed the fundamental definitions and an initial set of simulation
tools to evaluate a new approach to managing systems engineering where rapid
response software development projects incrementally evolve capabilities of existing
systems and/or systems of systems. It defines and models a kanban-based scheduling
system and a services approach to systems engineering among software projects in such
an environment.

Beyond the findings as presented, the following research accomplishments have been
achieved:

 An international advisory working group has been established and has
contributed to this work.

 Two peer-reviewed conference papers have been accepted; two others have been
submitted

 One international conference workshop on the subject has been conducted and a
second has been accepted for conduct this spring

 Two doctoral candidates are using this work in their dissertation approaches

5.2 NEXT STEPS FOR FURTHER RESEARCH

5.2.1 Phase 2: March-September 2012. Complete and validate

simulation demonstration toolkit

Expand the existing work through adding team-related components and parametric
representations for the key simulation variables. Establish a demonstration tool that can
be used to show how the approach works, how the various parameters interact (e.g.
values, WIP limits, work mix), and how existing teams may be modeled. This would be
particularly valuable in showing executives, management and practitioners how
workload, staffing, and priority decisions impact overall value produced and SE
effectiveness. It also provides a basic toolkit to support ongoing experimentation and
the impact on system-wide value of various alternatives. The work will complete the
following deliverables/capabilities.

1. Expanded KSS Definition including:

 Completed set of SE Services including value, quality and effort
parameters/functions; templates and mechanisms to define SE services

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 37

 UNCLASSIFIED

 Specific representation of sponsor teams including multi-level SE authorities;
variation of SE KSS in terms of authority levels, service needs and resource
availability

 Begin to identify and incorporate initial behavioral (cognitive-affective)
aspects of agents based on work by Te’eni, Weick&Roberts, Faraj&Sproull,
Majchrzak and others

2. Expanded KSS Simulation including:

 SE Services

 Parametric Value functions

 Parametric Quality functions

 Parametric Effort functions

 Defined scenarios for specific experiments

 Include feedback from the sponsor on previous simulation

3. Initial demonstration/visualization capability

 Demonstrates KSS concept and illustrates the key points

 Uses data from simulation to graphically present results of various scenarios

5.2.1.1 Phase 3: October-September 2012. Apply the toolkit to multiple real

environments

Complete the simulation by including behavioral and team-interaction components and
the ability to run statistical experiments to identify the sensitivity of various parameters
in determining outcomes. This is particularly important given the impact of team
dynamics and interacting belief systems on SE process outcomes and for introducing
change into organization scheduling and workflow processes. Refine and validate the
tool and concept through working with real projects in environments within or similar
to the sponsor’s. The completed and validated simulation toolkit can lead to:

 Better understanding of the value of various SE services

 Better integration of SE and software engineering through the services concept

 Clarity in the value of SE as a knowledge broker and analysis service in brownfield
evolution environments

The work will complete the following deliverables/capabilities.

1. Agent-based Simulation including:

 Behavioral (cognitive-affective) aspects of teams

 Bounded-rationality (team members do not always choose the best course of
action).

 Ability to run Monte Carlo-type experiments with random or parametric
variation of scenarios

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 38

 UNCLASSIFIED

2. Demonstration/Analysis capability

 Ability to define teams to match environment

 Ability to select from various work streams

3. Validation of tool and concept through modeling actual environments. Some
possible targets include:

 Maxwell AFB LeMay Center

 Defense industry projects (e.g. LMCO, NGC)

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 39

 UNCLASSIFIED

This page intentionally left blank

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 40

 UNCLASSIFIED

6 APPENDICES

6.1 APPENDIX A: REFERENCES

1. NDIA-National Defense Industrial Association (2010). Top Systems Engineering
Issues In US Defense Industry. Systems Engineering Division Task Group
Report.
http://www.ndia.org/Divisions/Divisions/SystemsEngineering/Documents/Stud
ies/Top%20SE%20Issues%202010%20Report%20v11%20FINAL.pdf.
September, 2010.

2. Turner, Richard, Shull F., et al (2009a) ―Evaluation of Systems Engineering
Methods, Processes and Tools on Department of Defense and Intelligence
Community Programs: Phase 1 Final Technical Report,‖ Systems Engineering
Research Center, SERC-2009-TR002, September 2009.

3. Turner, Richard, Shull F., et al (2009b) ―Evaluation of Systems Engineering
Methods, Processes and Tools on Department of Defense and Intelligence
Community Programs: Phase 2 Final Technical Report,‖ Systems Engineering
Research Center, SERC-2010-TR004, December 2009.

4. Turner, Richard and Wade, J. (2011). "Lean Systems Engineering within System
Design Activities," Proceedings of the 3rd Lean System and Software Conference,
May 2-6, 2011, Los Angeles, CA.

5. Boehm, Barry and Turner, Richard (2004). Balancing Agility and Discipline: A
Guide for the Perplexed. Boston, MA: Addison Wesley.

6. Larman C. and Vodde, B. (2009). Scaling Lean & Agile Development. Boston,
MA: Addison Wesley.

7. Poppendiek, Mary. (2007). Implementing Lean Software Development. Boston,
MA: Addison Wesley.

8. Anderson, David. (2010). Kanban: Successful Evolutionary Change for Your
Technology Business. Sequim, WA: Blue Hole Press

9. Reinertsen, Donald G. (2010). The Principles of Product Development Flow.
Redondo Beach, CA: Celeritas Publishing.

10. Poppendieck, Mary, and Tom Poppendieck. (2003). Lean Software
Development: An Agile Toolkit. The Agile Software Development Series. Boston:
Addison-Wesley.

11. Morgan, James M, and Jeffrey K Liker. (2006). The Toyota Product
Development System: Integrating People, Process, and Technology. New York:
Productivity Press.

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 41

 UNCLASSIFIED

12. Goldratt, Eliyahu M., and Jeff Cox. (2004). The Goal: a Process of Ongoing
Improvement. Great Barrington, MA: North River..

13. Boehm, B. (2009). Applying the Incremental Commitment Model to Brownfield
Systems Development, Proceedings, CSER 2009, April 2009.

14. Heath, B. et al. (2009). A survey of agent-based modeling practices (January
1998 to July 2008). Journal of Artificial Societies and Social Simulation. 12:4
2009.

15. Anderson et al. (2011). ―Studying Lean-Kanban Approach Using Software Process
Simulation.‖ A. Sillitti et al. (Eds.): Agile Processes in Software Engineering and
Extreme Programming, Part 1, Lecture Notes in Business Information
Processing, Volume 77, Pages 12-26 2011.

16. Boehm, Barry, Ricardo Valerdi, and Eric Honour (2008). ―The ROI of systems
engineering: Some quantitative results for software‐ intensive systems.‖ Systems
Engineering 11 (3) (September 1): 221-234. doi:10.1002/sys.20096.

17. Borshchev, A., and A. Filippov (2004). "From system dynamics and discrete
event to practical agent based modeling: reasons, techniques, tools." In
Proceedings of the 22nd International Conference of the System Dynamics
Society, 25–29.

18. M. Kellner, R. Madachy and D. Raffo (1999) Software Process Simulation
Modeling: Why? What? How?, Journal of Systems and Software, Spring 1999.

19. R. Madachy (2008). Software Process Dynamics, Wiley-IEEE Press, Hoboken,
NJ.

20. Office of the Deputy Under Secretary of Defense for Acquisition and Technology,
Systems and Software Engineering (2008). Systems Engineering Guide for Systems
of Systems, Version 1.0. Washington, DC: ODUSD(A&T)SSE, 2008.

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 42

 UNCLASSIFIED

APPENDIX B – SOFTWARE CODE

6.2 APPENDIX B – SOFTWARE CODE

6.2.1 Agent-based Simulation (Brahms)

6.2.1.1 Activity

class Activity extends BaseClass, Queue

{

 resource: true;

 attributes:

 // public boolean hadWorkItemPulled;

 relations:

 public Kanban isInKanban;

 public Activity hasUpstreamActivity;

 public Queue hasDoneQueue;

 public Queue hasBacklog;

 initial_beliefs:

 initial_facts:

 (current.isFinished = false);

 // (current isInKanban unknown);

 // (current hasUpstreamActivity unknown);

 activities:

 /* ---

 * GET: pullWorkItem

 * --- */

 get pullWorkItem(Activity activity, WorkItem workItem)

 {

 max_duration: 10;

 items: workItem;

 source: activity;

 }

 /* ---

 * GET: pullBacklogWorkItem

 * --- */

 get pullBacklogWorkItem(Queue backlog, WorkItem workItem)

 {

 max_duration: 10;

 items: workItem;

 source: backlog;

 }

 workframes:

 /* ---

 * WFR: DoPullWorkItem

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 43

 UNCLASSIFIED

 * --- */

/*

 workframe DoPullWorkItem

 {

 repeat: true;

 variables:

 forone (Activity) activity;

 forone (WorkItem) workItem;

 // This activity can accept another work item, and the upstream

 // activity has a work item that is complete.

 when (knownval(current.canAcceptNewItem = true) and

 knownval(current hasUpstreamActivity activity) and

 knownval(activity contains workItem) and

 knownval(workItem.isComplete = true))

 do

 {

 pullWorkItem(activity, workItem);

 conclude(workItem.isComplete = false, { fc:100, bc:100 });

 }

 }

*/

 /* ---

 * WFR: DoHadWorkItemPulled

 * --- */

/*

 workframe DoHadWorkItemPulled

 {

 repeat: true;

 variables:

 forone (WorkItem) workItem;

 // Some activity has pulled a work item from this activity.

 when (knownval(current.hadWorkItemPulled = true) and

 knownval(current.nWorkItems > 0)

)

 do

 {

 conclude(current.hadWorkItemPulled = false, { fc:100, bc:0 });

 }

 }

*/

 /* ---

 * WFR: DoPullWorkItemFromBacklog

 * --- */

 workframe DoPullWorkItemFromBacklog

 {

 repeat: true;

 variables:

 forone (Kanban) kanban;

 forone (Backlog) backlog;

 forone (WorkItem) workItem;

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 44

 UNCLASSIFIED

 when (knownval(current.canAcceptNewItem = true) and

 // knownval(current hasUpstreamActivity unknown) and

 // knownval(current isInKanban kanban) and

 // knownval(kanban hasBacklog backlog) and

 knownval(current hasBacklog backlog) and

 knownval(backlog contains workItem)

)

 do

 {

 // TODO: SensorProjectBacklog shouldn't be hard-wired

 pullBacklogWorkItem(backlog, workItem);

 conclude(workItem.isComplete = false, { bc:0, fc:100 });

 conclude(current.canAcceptNewItem = false, { bc:0, fc:100 });

 }

 }

 /* ---

 * WFR: DoCheckIsFinished

 * --- */

 workframe DoCheckIsFinished

 {

 repeat: true;

 variables:

 forone (Kanban) kanban;

 forone (Backlog) backlog;

 forone (WorkItem) workItem;

 when (knownval(current hasUpstreamActivity unknown) and

 knownval(current isInKanban kanban) and

 knownval(kanban hasBacklog backlog) and

 knownval(backlog.isFinished = true) and

 knownval(current.nWorkItems = 0) and

 knownval(current.isFinished = false) // and

 // not(current contains workItem)

)

 do

 {

 conclude(current.isFinished = true, { fc:100, bc:100 });

 }

 }

}

// vim:ts=2:sw=2:sts=2:et

6.2.1.2 Backlog

class Backlog extends BaseClass, Queue

{

 resource: true;

/*

 attributes:

 public int nWorkItems;

 public boolean isFinished;

 relations:

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 45

 UNCLASSIFIED

 public WorkItem hasAccepted;

 initial_facts:

 (current.nWorkItems = 0);

 (current.isFinished = false);

*/

 activities:

 workframes:

 /* ---

 * WFR: DoAcceptWorkItem

 * --- */

/*

 workframe DoAcceptWorkItem

 {

 // repeat: true;

 variables:

 foreach (WorkItem) workItem;

 // Something put a work item in this backlog.

 when (knownval(current contains workItem) and

 not(current hasAccepted workItem)

)

 do

 {

 conclude(current.nWorkItems = current.nWorkItems + 1, { bc:0, fc:100 });

 conclude(current hasAccepted workItem, { bc:0, fc:100 });

 }

 }

*/

 /* ---

 * WFR: DoProvideWorkItem

 * --- */

/*

 workframe DoProvideWorkItem

 {

 // repeat: true;

 variables:

 foreach (WorkItem) workItem;

 // Something pulled a work item from this backlog.

 when (knownval(current hasAccepted workItem) and

 not(current contains workItem)

)

 do

 {

 conclude(current.nWorkItems = current.nWorkItems - 1, { bc:0, fc:100 });

 retractFactValue(current, hasAccepted, workItem);

 }

 }

*/

 /* ---

 * WFR: DoCheckIsFinished

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 46

 UNCLASSIFIED

 * --- */

/*

 workframe DoCheckIsFinished

 {

 repeat: true;

 variables:

 forone (WorkItem) workItem;

 when (knownval(current contains workItem is false) and

 knownval(current.isFinished = false))

 do

 {

 conclude(current.isFinished = true, { fc:100, bc:0 });

 }

 }

*/

}

// vim:ts=2:sw=2:sts=2:et

6.2.1.3 Customer

jimport java.util.Random;

agent Customer memberof SystemGroup

{

 attributes:

 public int nWorkItemsToCreate;

 public int nWorkItemsCreated;

 public boolean isInitialized;

 public java(Random) generator;

 initial_beliefs:

 (current.nWorkItemsToCreate = 10);

 (current.nWorkItemsCreated = 0);

 (current.isInitialized = false);

 initial_facts:

 activities:

 /* ---

 * COA: createWorkItem

 * --- */

 create_object createWorkItem(WorkItem workItem)

 {

 display: "Work Item";

 max_duration: 6;

 action: new;

 source: WorkItem;

 destination: workItem;

 when: end;

 }

 /* ---

 * PUT: sendWorkItem

 * --- */

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 47

 UNCLASSIFIED

 get getWorkItem(WorkItem workItem)

 {

 max_duration: 0;

 items: workItem;

 }

 /* ---

 * COM: tellWorkItemDuration

 * --- */

 communicate tellWorkItemDuration(WorkItem workItem, int duration)

 {

 max_duration: 0;

 with: workItem;

 about:

 send(workItem.estimatedDuration = duration);

 }

 /* ---

 * PUT: sendWorkItem

 * --- */

 put sendWorkItem(Backlog backlog, WorkItem workItem)

 {

 max_duration: 0;

 items: workItem;

 destination: backlog;

 }

 workframes:

 /* ---

 * WFR: DoInitialization

 * --- */

 workframe DoInitialization

 {

 when (knownval(current.isInitialized = false))

 do

 {

 java (Random) gen = new Random();

 conclude(current.generator = gen);

 conclude(current.isInitialized = true, { fc:0, bc:100 });

 }

 }

 /* ---

 * WFR: DoCreateWorkItem

 * --- */

 workframe DoCreateWorkItem

 {

 repeat: true;

 variables:

 forone (java(Random)) gen;

 when (

 knownval(current.nWorkItemsCreated < current.nWorkItemsToCreate) and

 knownval(gen = current.generator)

)

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 48

 UNCLASSIFIED

 do

 {

 WorkItem workItem;

 int duration;

 double mu = 24 * 1440; // mean 24 hours, in seconds

 double sigma = 6 * 1440; // sd 6 hours, in seconds

 double dist = gen.nextGaussian() * sigma;

 double dur = dist + mu;

 doubleToInt(dur, duration);

 println_n("Estimated duration = %1", duration);

 createWorkItem(workItem);

 getWorkItem(workItem);

 conclude(workItem.estimatedDuration = duration, { fc:100, bc:0 });

 conclude(current.nWorkItemsCreated = current.nWorkItemsCreated + 1, { fc:0,

bc:100 });

 }

 }

 /* ---

 * WFR: DoTransferWorkItem

 * --- */

 workframe DoTransferWorkItem

 {

 repeat: true;

 variables:

 forone (WorkItem) workItem;

 when (knownval(current contains workItem))

 do

 {

 sendWorkItem(SensorProjectBacklog, workItem);

 }

 }

 /* ---

 * WFR: DoNotifyNoMoreItems

 * --- */

 workframe DoNotifyNoMoreItems

 {

 repeat: true;

 when (

 knownval(current.nWorkItemsCreated >= current.nWorkItemsToCreate) and

 knownval(SensorProjectBacklog.isFinished = false)

)

 do

 {

 conclude(SensorProjectBacklog.isFinished = true,

 { fc:100, bc:0 });

 }

 }

}

// vim:ts=2:sw=2:sts=2:et

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 49

 UNCLASSIFIED

6.2.1.4 Develop

object Develop instanceof Activity

{

 initial_beliefs:

 initial_facts:

 (current.wipLimit = 5);

 (current isInKanban SensorProject);

 (current hasUpstreamActivity unknown);

 (current hasBacklog SensorProjectBacklog);

 (current hasDoneQueue SensorProjectDoneQueue);

}

// vim:ts=2:sw=2:sts=2:et

6.2.1.5 Developer_1

agent Developer_1 memberof Resource

{

 initial_beliefs:

 (current.seniority = 1);

 (current isWorkingIn Develop);

}

// vim:ts=2:sw=2:sts=2:et

6.2.1.6 Developer_2

agent Developer_2 memberof Resource

{

 initial_beliefs:

 (current.seniority = 2);

 (current isWorkingIn Develop);

 // (current isWorkingIn Test);

}

// vim:ts=2:sw=2:sts=2:et

6.2.1.7 DoneQueue

class DoneQueue extends BaseClass, Queue

{

 resource: true;

 attributes:

 relations:

 public Activity hasUpstreamActivity;

 initial_facts:

 (current hasUpstreamActivity unknown);

 (current.wipLimit = 0); // infinite queue

 (current.nWorkItems = 0);

 activities:

 get pullWorkItem(Activity activity, WorkItem workItem)

 {

 max_duration: 10;

 items: workItem;

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 50

 UNCLASSIFIED

 source: activity;

 }

 workframes:

 workframe DoCheckUpstreamActivity

 {

 repeat: true;

 variables:

 forone (Activity) activity;

 forone (WorkItem) workItem;

 when (knownval(current hasUpstreamActivity activity) and

 knownval(activity contains workItem) and

 knownval(workItem.isComplete = true) and

 knownval(current.canAcceptNewItem = true)

)

 do

 {

 pullWorkItem(activity, workItem);

 // conclude(activity.nWorkItems = activity.nWorkItems - 1, { fc:100, bc:0 }

);

 // conclude(current.nWorkItems = current.nWorkItems + 1, { fc:100, bc:0 }

);

 }

 }

}

// vim:ts=2:sw=2:sts=2:et

6.2.1.8 Kanban

class Kanban extends BaseClass

{

 resource: true;

 relations:

 public Queue hasBacklog;

 public DoneQueue hasDoneQueue;

 initial_facts:

 (current hasBacklog unknown);

 (current hasDoneQueue unknown);

}

// vim:ts=2:sw=2:sts=2:et

6.2.1.9 Queue

class Queue extends BaseClass

{

 resource: true;

 attributes:

 public int wipLimit;

 public int nWorkItems;

 public boolean canAcceptNewItem;

 public boolean hasModifiedQueue;

 public boolean isFinished;

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 51

 UNCLASSIFIED

 relations:

 public WorkItem hasAccepted;

 initial_facts:

 (current.nWorkItems = 0);

 (current.canAcceptNewItem = true);

 (current.hasModifiedQueue = false);

 (current.isFinished = false);

 workframes:

 /* ---

 * WFR: DoNoteInfiniteDepth

 * --- */

 workframe DoNoteInfiniteDepth

 {

 when (knownval(current.wipLimit = 0))

 do

 {

 conclude(current.canAcceptNewItem = true, { fc:100, bc:0 });

 }

 }

 /* ---

 * WFR: DoCheckWipLimit

 * --- */

 workframe DoCheckWipLimit

 {

 repeat: true;

 when (knownval(current.hasModifiedQueue = true) and

 knownval(current.wipLimit > 0) and

 knownval(current.nWorkItems < current.wipLimit))

 do

 {

 conclude(current.canAcceptNewItem = true, { fc:100, bc:0 });

 conclude(current.hasModifiedQueue = false, { bc:0, fc:100 });

 }

 }

 /* ---

 * WFR: DoNoteQueueFull

 * --- */

 workframe DoNoteQueueFull

 {

 repeat: true;

 when (knownval(current.hasModifiedQueue = true) and

 knownval(current.wipLimit > 0) and

 knownval(current.nWorkItems >= current.wipLimit))

 do

 {

 conclude(current.canAcceptNewItem = false, { fc:100, bc:0 });

 conclude(current.hasModifiedQueue = false, { bc:0, fc:100 });

 }

 }

 /* ---

 * WFR: DoAcceptWorkItem

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 52

 UNCLASSIFIED

 * --- */

 workframe DoAcceptWorkItem

 {

 variables:

 foreach (WorkItem) workItem;

 // Something put a work item in this backlog.

 when (knownval(current contains workItem) and

 not(current hasAccepted workItem)

)

 do

 {

 conclude(current.nWorkItems = current.nWorkItems + 1, { bc:0, fc:100 });

 conclude(current.hasModifiedQueue = true, { bc:0, fc:100 });

 conclude(current hasAccepted workItem, { bc:0, fc:100 });

 }

 }

 /* ---

 * WFR: DoProvideWorkItem

 * --- */

 workframe DoProvideWorkItem

 {

 variables:

 foreach (WorkItem) workItem;

 // Something pulled a work item from this backlog.

 when (knownval(current hasAccepted workItem) and

 not(current contains workItem)

)

 do

 {

 conclude(current.nWorkItems = current.nWorkItems - 1, { bc:0, fc:100 });

 conclude(current.hasModifiedQueue = true, { bc:0, fc:100 });

 retractFactValue(current, hasAccepted, workItem);

 }

 }

 /* ---

 * WFR: DoCheckIsFinished

 * --- */

 workframe DoCheckIsFinished

 {

 repeat: true;

 variables:

 forone (WorkItem) workItem;

 when (knownval(current contains workItem is false) and

 knownval(current.isFinished = false))

 do

 {

 conclude(current.isFinished = true, { fc:100, bc:0 });

 }

 }

}

// vim:ts=2:sw=2:sts=2:et

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 53

 UNCLASSIFIED

6.2.1.10 Resource

jimport java.util.Random;

jimport java.io.PrintStream;

group Resource memberof SystemGroup

{

 attributes:

 public boolean isFinished;

 public boolean activityHasWorkItem;

 public boolean isInitialized;

 public boolean isLookingForWork;

 public boolean hasCheckedQueue;

 public boolean hasNotifiedTeammates;

 public boolean hasCheckedConflicts;

 public boolean hasConflict;

 public boolean hasWorkItem;

 public int seniority;

 public java(Random) generator;

 relations:

 public Activity isWorkingIn;

 public WorkItem isWorkingOn;

 public WorkItem hasSelected;

 public WorkItem ignoreConflicting;

 initial_beliefs:

 (current.isFinished = false);

 (current.activityHasWorkItem = false);

 (current.isInitialized = false);

 (current.isLookingForWork = false);

 (current.hasCheckedQueue = false);

 (current.hasNotifiedTeammates = false);

 (current.hasCheckedConflicts = false);

 (current.hasConflict = false);

 (current.hasWorkItem = false);

 (current isWorkingIn unknown);

 (current isWorkingOn unknown);

 (current hasSelected unknown);

 initial_facts:

 activities:

 /* ---

 * BCT: announceProjectMembership

 * --- */

 broadcast announceProjectMembership()

 {

 about: send(current isWorkingIn);

 }

 /* ---

 * BCT: announceSeniority

 * --- */

 broadcast announceSeniority()

 {

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 54

 UNCLASSIFIED

 about: send(current.seniority);

 }

 /* ---

 * CAC: checkForWork

 * --- */

 composite_activity checkForWork(Activity activity)

 {

 detectables:

 /* ---

 * DET: activityIsFinished

 * --- */

 detectable activityIsFinished

 {

 when (whenever)

 detect ((activity.isFinished = true))

 then end_activity;

 }

 activities:

 /* ---

 * PAC: lookForWorkItem

 * --- */

 primitive_activity lookForWorkItem()

 {

 min_duration: 6;

 max_duration: 300;

 }

 /* ---

 * PAC: waitForAwhile

 * --- */

 primitive_activity waitForAwhile(int awhile)

 {

 max_duration: awhile;

 }

 /* ---

 * GET: getWorkItem

 * --- */

 get getWorkItem(Activity activity, WorkItem workItem)

 {

 items: workItem;

 source: activity;

 when: start;

 }

 /* ---

 * COM: notifySelectedWorkItem

 * --- */

 communicate notifySelectedWorkItem(Resource teammate)

 {

 with: teammate;

 about: send(current hasSelected);

 }

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 55

 UNCLASSIFIED

 workframes:

 /* ---

 * WFR: DoCheckActivityQueue

 * --- */

 workframe DoCheckActivityQueue

 {

 detectables:

 detectable activityHasWorkItems

 {

 when (whenever)

 detect ((activity contains ?))

 then complete;

 }

 when (unknown(current contains) and

 unknown(current hasSelected) and

 knownval(current.isLookingForWork = true) and

 knownval(current.hasCheckedQueue = false)

)

 do

 {

 lookForWorkItem();

 conclude(current.hasCheckedQueue = true, { bc:100, fc:0 });

 }

 }

 /* ---

 * WFR: DoSelectWorkItem

 * --- */

 workframe DoSelectWorkItem

 {

 variables:

 forone (WorkItem) workItem;

 when (knownval(current.hasCheckedQueue = true) and

 unknown(current hasSelected) and

 unknown(current contains) and

 knownval(activity contains workItem) and

 not(current ignoreConflicting workItem)

)

 do

 {

 conclude(current.hasNotifiedTeammates = false, { bc:100, fc:0 });

 conclude(current.hasCheckedConflicts = false, { bc:100, fc:0 });

 conclude(current hasSelected workItem, { bc:100, fc:0 });

 retractBelief(current, ignoreConflicting);

 }

 }

 // NOTE: This whole issue of two Resources selecting the same

 // WorkItem could have been avoided by making the Activity

 // Queue active. That is, if Resources asked the Queue for an

 // available item, the Queue could actively resolve any

 // conflict. This would be the model for a computer-based

 // Kanban board, rather than a paper-based one.

 /* ---

 * WFR: DoNotifyTeammates

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 56

 UNCLASSIFIED

 * --- */

 workframe DoNotifyTeammates

 {

 variables:

 forone (WorkItem) workItem;

 collectall (Resource) teammate;

 when (knownval(current.hasNotifiedTeammates = false) and

 knownval(current hasSelected workItem) and

 knownval(teammate isWorkingIn activity) and

 knownval(teammate != current)

)

 do

 {

 notifySelectedWorkItem(teammate);

 conclude(current.hasNotifiedTeammates = true, { bc:100, fc:0 });

 conclude(current.hasCheckedConflicts = false, { bc:100, fc:0 });

 }

 // TODO: It's unnecessary to notify all the teammates,

 // because only those presently looking for a WorkItem

 // would care.

 }

 /* ---

 * WFR: DoWaitForTeammates

 * --- */

 workframe DoWaitForTeammates

 {

 variables:

 forone (WorkItem) workItem;

 when (knownval(current.hasNotifiedTeammates = true) and

 knownval(current.hasCheckedConflicts = false)

)

 do

 {

 // wait to see if any teammate also hasSelected

 waitForAwhile(1);

 conclude(current.hasCheckedConflicts = true, { bc:100, fc:0 });

 }

 }

 /* ---

 * WFR: DoDetectNoConflicts

 * --- */

 workframe DoDetectNoConflicts

 {

 variables:

 forone (WorkItem) workItem;

 collectall (Resource) teammate;

 when (knownval(current.hasConflict = true) and

 knownval(current.hasCheckedConflicts = true) and

 knownval(current hasSelected workItem) and

 knownval(teammate isWorkingIn activity) and

 knownval(teammate != current) and

 not(teammate hasSelected workItem)

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 57

 UNCLASSIFIED

)

 do

 {

 conclude(current.hasConflict = false, { bc:100, fc:0 });

 }

 }

 /* ---

 * WFR: DoDetectAnyConflicts

 * --- */

 workframe DoDetectAnyConflicts

 {

 variables:

 forone (WorkItem) workItem;

 forone (Resource) teammate;

 when (knownval(current.hasConflict = false) and

 knownval(current.hasCheckedConflicts = true) and

 knownval(current hasSelected workItem) and

 knownval(teammate isWorkingIn activity) and

 knownval(teammate != current) and

 knownval(teammate hasSelected workItem)

)

 do

 {

 conclude(current.hasConflict = true, { bc:100, fc:0 });

 }

 }

 /* ---

 * WFR: DoResolveConflictAsLoser

 * --- */

 workframe DoResolveConflictAsLoser

 {

 variables:

 forone (WorkItem) workItem;

 forone (Resource) teammate;

 when (knownval(current.hasConflict = true) and

 knownval(current hasSelected workItem) and

 knownval(teammate isWorkingIn activity) and

 knownval(teammate != current) and

 knownval(teammate hasSelected workItem) and

 knownval(current.seniority > teammate.seniority)

)

 do

 {

 conclude(current ignoreConflicting workItem, { bc:100, fc: 0 });

 retractBeliefValue(current, hasSelected, workItem);

 }

 }

 /* ---

 * WFR: DoResolveConflictAsWinner

 * --- */

 workframe DoResolveConflictAsWinner

 {

 variables:

 forone (WorkItem) workItem;

 foreach (Resource) teammate;

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 58

 UNCLASSIFIED

 when (knownval(current.hasConflict = true) and

 knownval(current hasSelected workItem) and

 knownval(teammate isWorkingIn activity) and

 knownval(teammate != current) and

 knownval(teammate hasSelected workItem) and

 (current.seniority < teammate.seniority)

)

 do

 {

 // forget that teammate selected this work item

 retractBeliefValue(teammate, hasSelected, workItem);

 // When this workframe ends, we believe that we alone

 // have selected this work item.

 }

 }

 /* ---

 * WFR: DoForgetTeammateSelections

 * --- */

 workframe DoForgetTeammateSelections

 {

 variables:

 foreach (Resource) teammate;

 forone (WorkItem) workItem;

 // If we have nothing selected, we don't care what the other

 // teammates have selected. This cleans up after the

 // decision reached in DoResolveConflictAsLoser.

 when (knownval(teammate hasSelected workItem) and

 knownval(current != teammate) and

 not(current hasSelected workItem)

)

 do

 {

 retractBeliefValue(teammate, hasSelected, workItem);

 }

 }

 /* ---

 * WFR: DoGetWorkItem

 * --- */

 workframe DoGetWorkItem

 {

 variables:

 forone (WorkItem) workItem;

 collectall (Resource) teammate;

 when (knownval(current.hasCheckedConflicts = true) and

 knownval(current.hasConflict = false) and

 knownval(current hasSelected workItem) and

 not(current contains workItem) and

 knownval(teammate isWorkingIn activity) and

 knownval(teammate != current) and

 not(teammate hasSelected workItem)

)

 do

 {

 getWorkItem(activity, workItem);

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 59

 UNCLASSIFIED

 conclude(current isWorkingOn workItem, { bc:100, fc:0 });

 conclude(current.isLookingForWork = false, { bc:100, fc:0 });

 retractBelief(current, hasSelected);

 }

 }

 thoughtframes:

 }

 /* ---

 * CAC: processWorkItem

 * --- */

 composite_activity processWorkItem(Activity activity, WorkItem workItem)

 {

 detectables:

 /* ---

 * DET: workItemIsComplete

 * --- */

 detectable workItemIsComplete

 {

 when (whenever)

 detect ((workItem.isComplete))

 then continue;

 }

 /* ---

 * DET: hasDoneQueue

 * --- */

 detectable hasDoneQueue

 {

 when (whenever)

 detect ((activity hasDoneQueue))

 then continue;

 }

 activities:

 primitive_activity checkWorkItemDuration()

 {

 max_duration: 6;

 }

 primitive_activity processWorkItem(int duration)

 {

 max_duration: duration;

 }

 primitive_activity waitForDownstreamToTakeItem()

 {

 max_duration: 60;

 }

 workframes:

 workframe CheckWorkItemDuration

 {

 detectables:

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 60

 UNCLASSIFIED

 detectable findWorkItemDuration

 {

 when (whenever)

 detect ((workItem.estimatedDuration = ?))

 then complete;

 }

 when (unknown(workItem.estimatedDuration))

 do

 {

 checkWorkItemDuration();

 }

 }

 workframe HasWorkItemNeedingWork

 {

 variables:

 forone (double) duration;

 forone (java(Random)) gen;

 when (knownval(workItem.isComplete = false) and

 knownval(workItem.estimatedDuration > 0) and

 knownval(duration = workItem.estimatedDuration) and

 knownval(gen = current.generator)

)

 do

 {

 int actualDuration;

 double sigma = 0.25;

 double sigma2 = Math.pow(sigma, 2.0);

 // duration value for mode (for median, drop sigma2 term)

 double mu = Math.log(duration) + sigma2;

 double sigmaN = sigma * gen.nextGaussian();

 double dur = Math.exp(mu + sigmaN);

 doubleToInt(duration /*dur*/, actualDuration);

 println_n("Duration = %1", actualDuration);

 processWorkItem(actualDuration);

 conclude(workItem.isComplete = true, { bc:100, fc:100 });

 }

 }

 workframe HasCompletedWorkItem

 {

 variables:

/*

 detectables:

 detectable workItemTaken

 {

 when (whenever)

 detect ((activity contains workItem is false))

 then complete;

 }

*/

 when (knownval(workItem.isComplete = true)

 // knownval(activity hasDoneQueue doneQueue)

)

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 61

 UNCLASSIFIED

 do

 {

 waitForDownstreamToTakeItem();

 }

 }

 workframe HasReleasedWorkItem

 {

 when (knownval(current isWorkingOn workItem) and

 knownval(activity contains workItem is false)

)

 do

 {

 conclude(current isWorkingOn unknown, { bc:100, fc:0 });

 conclude(current.activityHasWorkItem = false, { bc:100, fc:0 });

 }

 }

 }

 workframes:

 /* ---

 * WFR: DoInitialization

 * --- */

 workframe DoInitialization

 {

 when (knownval(current.isInitialized = false))

 do

 {

 java (Random) gen = new Random(19560516L);

 conclude(current.generator = gen);

 conclude(current.isInitialized = true, { bc:100, fc:0 });

 announceProjectMembership();

 announceSeniority();

 }

 }

 /* ---

 * WFR: DoCheckForWork

 * --- */

 workframe DoCheckForWork

 {

 repeat: true;

 variables:

 forone (Activity) activity;

 forone (Resource) another;

 detectables:

 when (knownval(current.isLookingForWork = true) and

 knownval(current isWorkingIn activity) and

 unknown(current contains)

)

 do

 {

 conclude(current.hasCheckedQueue = false, { bc:100, fc:0 });

 checkForWork(activity);

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 62

 UNCLASSIFIED

 }

 }

 /* ---

 * WFR: DoProcessWorkItem

 * --- */

 workframe DoProcessWorkItem

 {

 repeat: true;

 variables:

 forone (Activity) activity;

 forone (WorkItem) workItem;

 // The activity this resource is working in has an incomplete

 // work item.

 when (knownval(current contains workItem) and

 knownval(current isWorkingOn workItem) and

 knownval(workItem.isComplete = false) and

 knownval(current isWorkingIn activity)

)

 do

 {

 processWorkItem(activity, workItem);

 }

 }

 thoughtframes:

 /* ---

 * TFR: DoCheckActivtyStatus

 * --- */

 thoughtframe DoCheckActivityStatus

 {

 repeat: true;

 variables:

 forone (Activity) activity;

 when (knownval(current isWorkingIn activity) and

 knownval(activity.isFinished = true) and

 knownval(current.isFinished = false)

)

 do

 {

 conclude(current.isFinished = true, { bc:100, fc:0 });

 conclude(current.isLookingForWork = false, { bc:100, fc:0 });

 }

 }

 /* ---

 * TFR: DoConsiderWorkStatus

 * --- */

 thoughtframe DoConsiderWorkStatus

 {

 repeat: true;

 variables:

 forone (WorkItem) workItem;

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 63

 UNCLASSIFIED

 when (knownval(current.isFinished = false) and

 knownval(current.isLookingForWork = false) and

 unknown(current contains)

)

 do

 {

 conclude(current.isLookingForWork = true, { bc:100, fc:0 });

 }

 }

}

// vim:ts=2:sw=2:sts=2:et

6.2.1.11 SensorProject

object SensorProject instanceof Kanban

{

 initial_facts:

 (current hasBacklog SensorProjectBacklog);

 // (current hasDoneQueue SensorProjectDoneQueue);

}

// vim:ts=2:sw=2:sts=2:et

6.2.1.12 SensorProjectDoneQueue

object SensorProjectDoneQueue instanceof Queue

{

 initial_facts:

 (current.wipLimit = 0);

}

// vim:ts=2:sw=2:sts=2:et

6.2.1.13 Workitem

class WorkItem extends BaseClass

{

 resource: false;

 attributes:

 public int estimatedDuration;

 public boolean isComplete;

 // public boolean isQueued;

 public map needsSpecializations;

 relations:

 public Resource isBeingWorkedBy;

 initial_beliefs:

 // (current.estimatedDuration = unknown);

 // (current.isComplete = false);

 initial_facts:

 (current.estimatedDuration = unknown);

 (current.isComplete = false);

 // (current.isQueued = false);

 (current isBeingWorkedBy unknown);

SERC-2011-TR-022 UNCLASSIFIED 31 DEC 2011

 64

 UNCLASSIFIED

 activities:

 workframes:

}

// vim:ts=2:sw=2:sts=2:et

6.2.1.14 SensorProjectBacklog

object SensorProjectBacklog instanceof Backlog

{

}

// vim:ts=2:sw=2:sts=2:et

6.2.1.15 LeanSE

import *;

